DATA COMMUNICATION AND NETWORKING

Dr. H. Lilly Beaulah (Professor & Head)

Department of Computer Science and Engineering,

Mahendra College of Engineering,

Salem. Tamil Nadu. INDIA.

Mrs. V. Deepa (Assistant Professor)

Department of Computer Science and Engineering,
Mahendra College of Engineering,
Salem. Tamil Nadu. INDIA.

Ms. L. Vinitha Sree (Assistant Professor)

Department of Computer Science and Engineering,

Mahendra College of Engineering,

Salem, Tamil Nadu, INDIA.

Mr. M. Anandraj (Assistant Professor)

Department of Computer Science and Engineering,
Mahendra College of Engineering,
Salem, Tamil Nadu, INDIA.

DATA COMMUNICATION AND NETWORKING

Copyright © : Dr. H. Lilly Beaulah

Publishing Rights (P) : VSRD Academic Publishing

A Division of Visual Soft India Pvt. Ltd.

ISBN-13: 978-93-87610-61-3 FIRST EDITION, JULY 2020, INDIA

Printed & Published by:
VSRD Academic Publishing
(A Division of Visual Soft India Pvt. Ltd.)

Disclaimer: The author(s) are solely responsible for the contents compiled in this book. The publishers or its staff do not take any responsibility for the same in any manner. Errors, if any, are purely unintentional and readers are requested to communicate such errors to the Authors or Publishers to avoid discrepancies in future.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the Publishers & Author.

Printed & Bound in India

VSRD ACADEMIC PUBLISHING

A Division of Visual Soft India Pvt. Ltd.

REGISTERED OFFICE

154, Tezabmill Campus, Anwarganj, KANPUR – 208003 (UP) (IN) Mb: 98999 36803, Web: www.vsrdpublishing.com, Email: vsrdpublishing@gmail.com

MARKETING OFFICE

340, FF, Adarsh Nagar, Oshiwara, Andheri(W), MUMBAI–400053 (MH)(IN) Mb: 99561 27040, Web: www.vsrdpublishing.com, Email: vsrdpublishing@gmail.com

PREFACE

Data communication refers to data exchange between a source and a receiver through transmission media form such as a wire cable. If communicating devices are in the same building or a similarly restricted geographical area. data communication is said to be local. A network is a series of linked computers, servers, mainframes, network devices, peripherals, or other devices to allow data sharing. The Internet, which links millions of people around the world, is an excellent example of a network. One of the ramifications of this development is a significant increase in the number of careers where knowledge of these technologies is key to success—and a proportionate increase in the number and types of students taking courses to learn about them. Today. students from a range of academic and professional backgrounds who want to understand the concepts and processes underlying telecommunications and networking.

Several features of this text are designed to make data communication and networking particularly easy for students to understand. We used the five-layer Internet model as the framework for the text not only because a thorough understanding of the model is essential to understand most current networking theory, but also because it is based on an interdependency structure: each layer builds on the layer below it and supports the layer above it. Likewise, each concept presented in our text builds on the concepts explored in the preceding chapters. The Internet model has been selected because it is a fully implemented protocol. This text is designed for telecommunications or data communication students with little or no background. We are using a bottom-up

approach for this purpose. With this method, before learning about networking (upper layers), students learn first about data communication (lower layers).

To be effective, students without technical expertise need to have access to a textbook on data communication and networking while still offering content that is sufficiently detailed to challenge more seasoned readers. With this new mix of students in mind, this text is written.

 $\angle S$ Author(s)

ACKNOWLEDGEMENT

We wish to record our sincere gratitude to Er.Ba.Mahendhiran and Er.B.Maha Ajay Prasath, the Managing Directors, Mahendra Group of Institutions, for his constant encouragement and kind support in all our endeavours.

We deem it a proud privilege to extend our greatest sense of gratitude to Dr.R.Samson Ravindran, Executive Director, Mahendra Group of Institutions for the inspiring guidance and valuable suggestions throughout this pursuance of this report.

We express our profound thanks to Dr.N. Malmurugan, Principal, Mahendra College of Engineering, for his great enthusiasm and inspiration which enabled us to bring this venture to fruition.

We express our sincere thanks to Dr.N.Mohanasundararaju, Dean-Academics, Mahendra College of Engineering who extended their whole hearted cooperation and moral support for completion of this book.

We would like to express a special note of gratitude to the fantastic editing team of VSRD Academic Publishing (A division of Visual Soft India Private Limited) in releasing this book.

Finally, this work would not have been possible without the love and support of our colleagues, family members and friends. We are extremely grateful to one and all.

Thirumigu. M.G.BHARATHKUMAR Founder & Chairman, Mahendra Educational Trust

Foreword

"Good communication is not just data transfer. You need to show people something that addresses their anxieties, that accepts their anger, that is credible in a very gut-level sense, and that evokes faith in the vision".

John P. Kotter, Dan Cohen (2013).

The fastest-growing technologies in our culture today may be data communication and networking. One of the ramifications of this development is a significant increase in the number of careers where learning these innovations is necessary for success and a proportionate increase in the number and types of students taking courses to learn about them.

We used the five-layer Internet model as the framework for the text, not only because a thorough understanding of the model is essential to understand most current networking theory, but also because it is based on an inter-dependency structure. Each layer builds on the layer below it, supporting the layer above it. Likewise, every definition presented in our text builds on the concepts explored in the preceding chapters. The Internet model has been selected because it is a fully implemented protocol. This text is designed for telecommunications or data communication students with little or no background. We are using a bottom-up approach for this reason. With this approach, before learning about networking (upper layers), students learn first about data communication (lower layers).

I am pleased to note that the Mahendra College of Engineering's H_0D $\circ f$ Computer Science and Engineering, Dr. H.Lilly Beaulah and her faculty members, Ms. L. Vinithasree and V. Deepa, have nicely written this book on "Data Communication Networking" for the student community's benefit. They have accomplished this goal, and I believe their research will inspire and enlighten all those who are interested in computers, computer science, and the growing role of computer and information technology in the modern world.

Jammes

M.G.BHARATHKUMAR

Founder & Chairman, Mahendra Educational Trust

CONTENTS

CHA	PTER 1: DATA COMMUNICATION	1
1.1.	DATA COMMUNICATION CIRCUITS	1
1.2.	SERIAL AND PARALLEL DATA TRANSMISSION	3
1.3.	DATA COMMUNICATIONS NETWORKS	4
1.4.	NETWORK COMPONENTS, FUNCTIONS, AND FEATURES	4
1.5.	NETWORK MODELS	5
1.6.	CISCO THREE LAYER MODEL	6
1.7.	SIGNALS, NOISE, MODULATION AND DEMODULATION	8
1.8.	SIGNAL ANALYSIS	9
1.9.	AMPLITUDE, FREQUENCY AND PHASE	9
1.10.	VARYING SINE WAVE WITH RESPECT TO FREQUENCY AND PHASE	
1.11.	FREQUENCY SPECTRUM AND BANDWIDTH	
1.12.	ELECTRICAL NOISE AND SIGNAL-TO-NOISE RATIO	14
1.13.	ANALOG MODULATION SYSTEMS	16
1.14.	WIRELESS COMMUNICATIONS SYSTEMS	32
1.15.	NORMAL MODES OF WAVE PROPAGATION	40
1.16.	CELLULAR TELEPHONE SYSTEMS	55
СНА	PTER 2: NETWORKING	77
2.1.	NETWORKS	77
2.2.	DATA REPRESENTATION	80
2.3.	THE INTERNET	83
2.4.	PROTOCOLS AND STANDARDS	87
2.5.	NETWORK TYPES	94
2.6.	WIRELESS NETWORK	104
2.7.	PROTOCOL LAYERING	108
2.8.	TCP/IP PROTOCOL SUITE	111

2.9.	OSI MODEL	118
2.10.	NETWORK CONCEPT AND CLASSIFICATIONS	126
2.11.	LAN HARDWARE AND SOFTWARE	135
2.12.	TRANSMISSION CHANNELS	135
2.13.	TRANSMISSION MEDIA	137
2.14.	SWITCHING	141
2.15.	INTRODUCTION	162
2.16.	DATA LINK LAYER SWITCHING	164
2.17.	LINK-LAYER ADDRESSING	179
2.18.	ERROR CORRECTION AND DETECTION	186
2.19.	ELEMENTARY DATA LINK LAYER PROTOCOLS	193
2.20.	DLC SERVICES	208
2.21.	HDLC	213
2.22.	POINT- TO-POINT PROTOCOL (PPP)	221
2.23.	MEDIA ACCESS CONTROL (MAC)	225
2.24.	WIRED LANS	229
2.25.	ETHERNET	230
2.26.	WIRELESS LAN'S	237
2.27.	RANDOM ACCESS	240
2.28.	CSMA WITH COLLISION DETECTION	247
2.29.	IEEE 802.11	249
2.30.	BLUETOOTH	254
2.31.	WAN DEVICES / HARDWARE	264
2.32.	NETWORK LAYER SERVICES	270
2.33.	PACKET SWITCHING	272
2.34.	IPV4 ADDRESSES	276
2.35.	FORWARDING OF IP PACKETS	289
2.36.	ICMP	292
2.37.	UNICAST ROUTING PROTOCOLS	294
2.38.	MULTICAST ROUTING PROTOCOLS	302
2.39.	IPV6 ADDRESSING	310
2.40.	INTRODUCTION	317

2.41.	TRANSPORT LAYER PROTOCOLS	319
2.42.	UDP	319
2.43.	TCP	321
2.44.	SERVICES	325
2.45.	QUALITY OF SERVICE	329
2.46.	PORT NUMBERS	336
2.47.	USER DATAGRAM PROTOCOL (UDP)	339
2.48.	TRANSMISSION CONTROL PROTOCOL	344
2.49.	SCTP	366
2.50.	www	369
2.51.	WEB SERVICES	373
2.52.	FILE TRANSFER PROTOCOL (FTP)	377
2.53.	ELECTRONIC MAIL	381
2.54.	SECURE SHELL (SSH)	394
2.55.	DOMAIN NAME SYSTEM	397
2.56.	SNMP (SIMPLE NETWORK MANAGEMENT PROTOCOL)	404
СНА	APTER 3: SECURITY4	107
3.1.	SECURITY	407
3.2.	SYMMETRIC-KEY CRYPTOGRAPHY	409
3.3.	ASYMMETRIC-KEY CRYPTOGRAPHY	421
3.4.	SECURITY SERVICES	423
3.5.	FOUR PROTOCOLS	436
3.6.	FIREWALLS	440