OPTIMAL DESIGN OF NETWORK AND RELIABILITY EVALUATION

Dr. Mohd. Ashraf (Associate Professor – Computer Science & Engg. Dept.) Maulana Azad National Urdu University, Hyderabad, Telengana, INDIA.

OPTIMAL DESIGN OF NETWORK AND RELIABILITY EVALUATION

Copyright © Publishing Rights ® : Dr. Mohd. Ashraf : VSRD Academic Publishing A Division of Visual Soft India Pvt. Ltd.

ISBN-13: 978-93-86258-41-0 FIRST EDITION, MAY 2017, INDIA

Typeset, Printed & Published by: VSRD Academic Publishing (A Division of Visual Soft India Pvt. Ltd.)

Disclaimer: The author(s) are solely responsible for the contents of the papers compiled in this book. The publishers or its staff do not take any responsibility for the same in any manner. Errors, if any, are purely unintentional and readers are requested to communicate such errors to the Editors or Publishers to avoid discrepancies in future.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the Publishers & Author.

Printed & Bound in India

VSRD ACADEMIC PUBLISHING

A Division of Visual Soft India Pvt. Ltd.

REGISTERED OFFICE

154, Tezabmill Campus, Anwarganj, KANPUR–208003 (UP) (IN) Mb: 99561 27040, Web: www. vsrdpublishing.com, Email: vsrdpublishing@gmail.com

MARKETING OFFICE (NORTH INDIA)

Basement-2, Villa-10, Block-V, Charmwood Village, FARIDABAD–121009 (HY)(IN) Mb: 98999 36803, Web: www. vsrdpublishing.com, Email: vsrdpublishing@gmail.com

MARKETING OFFICE (SOUTH INDIA)

340, FF, Adarsh Nagar, Oshiwara, Andheri(W), MUMBAI–400053 (MH)(IN) Mb: 99561 27040, Web: www. vsrdpublishing.com, Email: vsrdpublishing@gmail.com

PREFACE

Many decision problem that arises in the real world can be modeled and solved as combinatorial optimization problem. This is an active research area where new formulation, algorithms, practical application and theortical result often proposed and published current challenge in the field involve modeling of hard problems, development of exact method, and the design and experimental evaluation of approximate and hybrid method.

Optimization is a branch of applied metaheuristics and numerical analysis. Almost every problem in engineering. Science, economics, and the life can be formulated as an optimization or a search problem. While some of the problemcan be simple that can be solved by traditional optimization method based on mathematical analysis, most of the problem are very hard to solve these using analysis-based approachs. Fortunatly, we can solve these hard optimization problems by inspirations from nature. One of the most common metaheristic that is inspired from the nature is ant coloy optimization metaheuristic used to solve the hard optimization problem. In this text, we have formulated the problem of optimal design of network and solved using the Ant coloney optimization that is integrated eith soft computing technique such as Fuzzy logic.

Other aspect of this book is to study the reliability evaluation technique and development of various algorithm to enumerate the path set/ cutest for the input of reliability evaluation algorithm. As we know, network reliability analysis consist of determining the probability of correct operation of a system

This book introduced the problem of enumeration of

pathset/cutsets for reliability evaluation and optimization of network design using metaheuristic. It present the most important mrthod, algorithm, and intresting review of the literature.

A roadmap for navigating through the book is given a follows, Except the introductory Chapter, the content of the book can be grossly divided in to five chaptet and an reference.

Chapter 2 provides a general overview of concept of graph theory, optimization theory and fuzzy logic and its operator for multi-objective optimization problem. The chapter starts with the short discussion of application of graph theory and related definition used in this book.

This is followed by elaborate discussion of combinatorial optimization and multi-objective optimization and multiobjective problem formulation technique and its metaheuristic solving techniques. Another focus of this chapter is the background of fuzzy logic and well known fuzzy operators with respect to its use in multi-objective optimization.

In addition to the above, describes the detail discussion of ant colony optimization technique for optimization problem and its variants like Ant System, Ant Colony System. Furthermore, chapters also discuss the multiobjective optimization nature of ant colony optimization algorithms.

Chapter 3 describes and elaborates proposed two different modified computationally efficient algorithms for enumeration of spanning tree for global reliability evaluation of complex communication network. Furthermore, an algorithm for multi-source and multiterminal pathsets enumeration has been proposed in this chapter. The algorithm is simple and easily amenable to computer implementation using the simplest data structure array. The algorithm is able to find all the minimal paths for directed / undirected scenario

In Chapter 4, algorithms have been modified to generate global minimal cut-sets for a given directed and undirected network for global reliability evaluation. The generation of global minimal cut-sets is an important contribution in the process of networks reliability evaluation.

Chapter 5 discussed the topology design problem of networks in sufficient details. This includes a formal description of the problem, notation, assumption, terminology, cost function and computation of objective value. This chapter also proposed the fuzzy integrated ant colony optimization algorithm for topology design of details communication network The of the implementation are provided and the algorithm empirically analyzed with different parameter of ACO and followed by the comparative discussion with Multiobjective optimization Ant Colony optimization Algorithm.

Chapter 6 highlights the conclusion of this research and provides direction for future research.

🗷 Dr. Mohd. Ashraf

ACKNOWLEDGEMENT

One of the great pleasures of writing a book is acknowledge the effort of many people whose name may not appear on the cover, but whose hardwork, cooperation, friendship and understanding were crucial to the production of the book. Many of our colleagues at *Gautam Buddha University, Greater Noida* and *Maulana Azad National Urdu University, Hyderabad* devoted long hours to this book.

We would like to include a special note of thanks to **Dr. Rajesh Mishra**, *Professor*, *Gautam Buddha University* (My Mentor and Research Guide) for organizing the effort for reviewed and updated much of the existing writing and diagrams.

The most important acknowledgment is to the thousand of authors represented in the recommended reading and works cited section in the chapters; their research paper, articles and books have provided the diversity of intresting material.

We would like to thank to my colleagues Dr. Navaid Zafar Rizvi, Dr. Sandeep Sharma, Dr. Zair Hussain Dr. Anurag Singh Baghel and Mr. Ahsan Siddiquee for their invaluable assistance and improving the manuscript.

We are fortunate to have worked on this book with the talented and dedicated team of publishing professionals of VSRD Academic Publishing (A Division of Visual Soft India Private Limited).

Last, and most obviously not the least, we thank our families and friend for their support, many years ago an author describe writing a text as a "Locking yourself in a room" process. While the authors suffer through the writing process, families and friend suffer through their absence. We can only hope that as they view the final product, they feel that their sacrifices were worth it.

© Dr. Mohd Ashraf Associate Professor Computer Science & Engineering Maulana Azad National Urdu University Gachibowli, Hyderabad, India

CONTENTS

CH A	APTER 1 : INTRODUCTION	1
1.1.	RELIABILITY EVALUATION OF COMMUNICATION NETWORK	5
1.2.	TOPOLOGICAL DESIGN OF COMMUNICATION NETWORK	7
1.3.	LITERATURE SURVEY 1.3.1.SURVEY ON GLOBAL RELIABILITY EVALUATION 1.3.2.SURVEY ON NETWORK TOPOLOGICAL LAYOUT DESIGN .	11 11 18
1.4.	MOTIVATION	20
1.5.	PROBLEM AREA'S	22
1.6.	METHODOLOGY	24
CHA	APTER 2 : THEORTICAL ASPECTS AND	
CON	NCEPTS	27
2.1	GRAPH THEORY-A TOOL FOR NETWORK	•
	RELIABILITY	29 20
	2.1.2 DATA STRUCTURE FOR GRAPH REPRESENTATION	30
	2.1.3 RELIABILITY MEASURES	36
	2.1.4 PATHSET AND CUTSET-DEFINITION AND ENUMERATION	I 38
2.2	APPROACHES FOR RELIABILITY EVALUATION	
	TECHNIQUE	41
	2.2.1 PATHSET AND CUTSET (POC) APPROACHES 2.2.2 NON-PATHSET OR CUTSET (NPOC) APPROACHES	42 45
2.3	OPTIMIZATION AND ITS SOLVING TECHNIQUE 2.3.1 FORMULATION OF OPTIMIZATION PROBLEM 2.3.2 TYPE OF OPTIMIZATION PROBLEM	45 46 52
2.4	CLASSIFICATION OF OPTIMIZATION ALGORITHMS	58
2.5	META-HEURISTICS FOR OPTIMIZATION	
	ALGORITHMS	59
2.6	ANT COLONY OPTIMIZATION META-HEURISTIC	63

	2.6.1 BIOLOGICAL BEHAVIOR OF REAL ANT AND ANT	
	ALGORITHM	54
	2.6.2 RELATION BETWEEN NATURAL AND ARTIFICIAL ANTS	<i>'</i> 0
	2.6.3 GENERAL FRAMEWORK FOR ANT COLONY OPTIMIZATION	
	META-HEURISTIC (ACOM)	12
	2.6.4 ALGORITHMIC COMPONENT FOR ACO	/5
2.7	MAIN VARIANT OF ACO ALGORITHMS7	7
	2.7.1 ANT SYSTEM	77
	2.7.2 ANT COLONY SYSTEM (ACS)	78
2.8	ACO AND MULTI-OBJECTIVE OPTIMIZATION	80
	2.8.1 COMPONENTS OF MULTI-OBJECTIVE ACO ALGORITHM 8	32
29	FU77Y LOGIC FOR MULTI-OBJECTIVE	
2.7		25
		25
	2 9 2 FLI77Y SET THEORY (FST)	36
	2 9 3 FUZZY REASONING	28
	2.9.4 LINGUISTIC VARIABLE	38
	2.9.5 FUZZY RULE	39
	2.9.6 FUZZY LOGIC SYSTEM (FLS)) 1
	2.9.7 FUZZY OPERATORS FOR MULTI-OBJECTIVE OPTIMIZATION	
	PROBLEM) 1
2.10	CONCLUSION	15
2.10		U
СНА	PTER 3 · PATH APPROACH FOR COMPUTING	
NFT	WORK RELIABLE ITV MEASURES	7
		'
3.1	COMMUNICATION NETWORK RELIABILITY	~
	EVALUATION	9
3.2	A NEW METHOD FOR ENUMERATING ALL	
	SPANNING TREE USING BRANCH REMOVAL	
	TECHNIQUE10)1
	3.2.1 DEVELOPMENT OF ALGORITHM 10)3
	3.2.2 ALGORITHMS FOR ENUMERATION OF SPANNING TREE 10)5
	3.2.3 FLOW CHART OF PROPOSED ALGORITHM 10)8
	3.2.4 ILLUSTRATION OF PROPOSED ALGORITHM)9
3.3	METHOD FOR ENUMERATION OF ALL GLOBAL	
	PATH/ SPANNING TREE USING DEPTH FIRST	
	SEARCH TRAVERSAL	1

	3.3.1 THE PROPOSED ALGORITHM	121
	3.3.2 FLOW CHART OF PROPOSED METHOD	125
3.4	ILLUSTRATION OF PROPOSED ALGORITHM	126
3.5	EXPERIMENTAL RESULT AND DISCUSSION	137
3.6	A METHOD FOR ENUMERATION OF TERMINAL	
	AND MULTI-TERMINAL PATH	142
	3.6.1 THE PROPOSED ALGORITHM	143
	3.6.2 ILLUSTRATION WITH EXAMPLE	144
27	3.0.3 RESULTS AND DISCUSSIONS	149 1 F F
3.7	CONCLUSION	155
СНА	APTER A · CUT SET APPROACH FOR CLOBAL	
REI	JABILITY MEASURES	157
4.1	ΑΝ ΟVERVIEW ΟΕ ΑΗΑΜΑΠ'S PROPOSED	
1.1	ALGORITHM	
4.2	AN OVERVIEW OF MISHRA AND CHATURVEDI'S	
	PROPOSED ALGORITHM	
4.3	DEFINITIONS, GENERAL ASSUMPTIONS AND	
	NOTATIONS	164
4.4	PROPOSED MODIFIED CUT SET ALGORITHM	
	(MGCA)	165
4.5	ALGORITHM ILLUSTRATION	169
4.6	EXPERIMENTAL RESULTS AND DISCUSSIONS	174
	4.6.1 DIRECTED NETWORKS	177
	4.6.2 UNDIRECTED NETWORKS	179
4.7	COMMENTS AND STRATEGY	
4.8	CONCLUSION	183
CHA	APTER 5 : TOPOLOGICAL DESIGN OF	405
CON	MMUNICATION NETWORK	185
5.1	PROBLEM STATEMENT AND ASSUMPTION	
5.2	PROBLEM FORMULATION FOR DESIGN OF	
	NETWORK	
5.3	NETWORK DESIGN CONSTRAINTS	191

5.4	MULTI-OBJECTIVE ANT COLONY OPTIMIZATION FOR NETWORK DESIGN	192
5.5	FUZZY LOGIC APPROACH FOR NETWORK TOPOLOGY DESIGN	196
5.6	FUZZY INTEGRATED ANT COLONY OPTIMIZATION ALGORITHM 5.6.1 INITIALIZATION OF ANTS 5.6.2 SOLUTION CONSTRUCTION /ANT ACTIVITY 5.6.3 FUZZY HEURISTIC VALUE	201 201 202 203
5.7	MINIMUM AND MAXIMUM VALUE OF DESIGN OBJECTIVES PARAMETERS	206
5.8	EXPERIMENTAL SETUP 5.8.1 SETTING UP DIFFERENT PARAMETER FOR PROPOSED ALGORITHM	207 210
5.9	RESULTS AND DISCUSSIONS 5.9.1 EFFECT OF PHEROMONE DEPOSIT AND EVAPORATION RATE	212 216
5.10	EFFECT OF ANT COLONY SIZE (NUMBER OF ANTS).	219
5.11	COMPARISON OF FIACO AND MOACO	229
5.12	CONCLUSION	232
СНА	PTER 6 : CONCLUSION	.233
6.1	SUMMARY	236
6.2	FUTURE DIRECTION	239
REF	ERENCES	.241